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Problem 1. Prove that the polynomial P (X) = X3 − 3X − 1 is irreducible over Q.

Proof. Now, if P (X) is not irreducible over Q, then clearly one of its factors must have degree 1. In other
words P (X) is reducible over Q if and only if it has a root in Q. If possible, let p/q ∈ Q be a root of f(X)
where p, q ∈ Z and (p, q) = 1. Then we have :

P (p/q) = 0⇒ p3 − 3pq2 − q3 = 0

⇒ p(p2 − 3pq) = q3, q(3pq + q2) = p3

⇒ p|1, q|1

(because (p, q) = 1). Hence the only possible roots are ±1. But plugging in the values we see that none of
them are roots of P (X). Hence P (X) must be irreducible over Q.

Problem 2. Compute the degree [Q( 3
√
2 +
√
5) : Q].

Proof. Let K = Q( 3
√
2 +
√
5), α = 3

√
2 +
√
5. Then note that :

α =
3
√
2 +
√
5⇒ (α−

√
5)3 = 2

⇒
√
5(3α2 + 5) = α3 + 15α− 2

⇒
√
5 ∈ K ⇒ 3

√
2 ∈ K.

Hence we must have K = Q( 3
√
2,
√
5). It is easy to see that [Q(

√
5) : Q] = 2, [Q( 3

√
2) : Q] = 3. We will now

use the following result : E1, E2 be two field extensions over a field F of degree d1, d2 respectively where
(d1, d2) = 1 and let E = E1E2, then [E : F ] = d1d2. Using this result we conclude that [K : Q] = 6.

Problem 3. Prove that 8X3 − 6X − 1 is irreducible over Q.

Proof. Let us denote the given polynomial by f(X). Now, if f(X) is not irreducible over Q, then clearly one
of its factors must have degree 1. In other words f(X) is not irreducible over Q if and only if it has a root in
Q. If possible, let p/q ∈ Q be a root of f(X) where p, q ∈ Z and (p, q) = 1. Then we have :

f(p/q) = 0⇒ 8p3 − 6pq2 − q3 = 0

⇒ p(8p2 − 6q2) = q3, q(6pq + q2) = 8p3

⇒ p|1, q|8

(because (p, q) = 1). Hence the only possible roots are ±1,±1/2,±1/4,±1/8. Plugging in the values we
find out that none of these are roots of f(X). Hence f(X) must be irreducible over Q.

Problem 4. Let char k = p > 0 and f(X) ∈ k[X] be such that f
′
(X) = 0. Prove that ∃ a polynomial

g(X) ∈ k[X] such that f(X) = g(Xp).

Proof. Let the given polynomil be f(X) = anX
n+ · · ·+a1X+an. Now f

′
(X) = 0 means that we must have

iai = 0 for 1 ≤ i ≤ n. Since we are working in a field, this possible if and only if either i = 0 or ai = 0. Hence
ai 6= 0 ⇒ i = 0 where i is treated as an element of k. But i = 0 ⇒ p|i. So the ith term in f(X) has nonzero
coefficient if and only if p|i. In particular n = p ·m. Let g(X) = anX

m + ap(m−1)X
m−1 + · · · + apX + a0.

Then it is clear from the above argument that f(X) = g(Xp).
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Problem 5. Let H and K be subgroups of G, |H|2 > |G|, |K|2 > |G|. Show that H ∩K 6= {1}.

Proof. We begin by proving the following result : |HK| = |H||K|/|H ∩K|where HK = {hk|h ∈ H, k ∈ K}.
Note that HK is just a subset of G, it need not be a subgroup. Define a map f : H × K → HK by
(h, k) 7→ hk. By our definition, f is surjective. Now to prove the result we show that for any x ∈ HK we
have |f−1(x)| = |H ∩ K|. If f(h, k) = x and g ∈ H ∩ K then clearly f(hg−1, gk) = x and so f−1(x) must
have atleast |H ∩K| elements. Conversely, if also f(h1, k1) = x then hk = h1k1 ⇒ h−1

1 h = k1k
−1. Setting

g = h−1
1 h ∈ H ∩K we see that h1 = hg−1, k1 = gk. So |f−1(x)| = |H ∩K| and the result follows.

Now in our situation, let us assume that H ∩K = {1} ⇒ |H ∩K| = 1. Now using the above result we see
that |HK| = |H||K|. But by our assumption about |H|, |K|, we have |H||K| > |G| ⇒ |HK| > |G| and we
have reached a contradiction. Hence H ∩K 6= {1}.

Problem 6. Let n ≥ 3. Prove that the cycle (1 2 3) is not the cube of any element in Sn.

Proof. We are going to use the following facts about the permutation group Sn :

• every permutation can be written as a product of disjoint cycles;

• disjoint cycles commute;

• the order of a cycle of length m is m;

• the order of a permutation written as a product of disjoint cycles is the least common multiple of the
lenghts of the cycles;

• a cycle of length l = km when raised to kth power will decompose into k disjoint cycles of length m.

Now if possible assume that (1 2 3) = σ3 for some σ ∈ Sn. Clearly σ9 = 1 ⇒ order(σ) = 9. Hence if we
write σ as a product of disjoint cycles, their lengths must be 3 or 9 with atleast one cycle of length 9. When
we raise σ to the 3rd power, the cycles of length 3 will become trivial and each of the cycles of length 9 will
decompose into 3 cycles of length 3. Clearly it is not possible that the product of more then then one disjoint
3 cycles equals just one 3 cycle. Hence (1 2 3) can not be written as the cube of any element in Sn.

Problem 7. In Sn, prove that conjugate of a cycle of length r is a cycle of length r.

Proof. We use the following fact : let σ ∈ Sn and (a1 a2 . . . ar) be a cycle in Sn, then σ(a1 a2 . . . ar)σ
−1 =

(σ(a1) σ(a2) . . . σ(ar)). From this it is clear that the conjugate of a cycle of length r is a cycle of length
r.

Problem 8. Determine the number of conjugacy class in S4.

Proof. We use the following fact : the number of conjugacy classes in Sn equals the number of integer
partitions of n. Hence the number of conjugacy classes in S4 is 5.

Problem 9. Find the number of non-isomorphic abelian groups of order 81.
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Proof. For this problem we will use the structure theorem for finite abelian groups. According to which any
finite abelianG can be written as Zd1×Zd2×· · ·×Zdr where di’s are positive integers such that d1|d2| · · · |dr
and are uniquely determined by the isomorphism type ofG. In our situation |G| = 81 = 34, hence the cyclic
subgroups occurring in the decomposition as above must have order 3 or 9 or 27 or 81. So clearly the only
possibilities are :

• Z81,

• Z3 × Z27,

• Z9 × Z9,

• Z3 × Z3 × Z9,

• Z3 × Z3 × Z3 × Z3.

So there are 5 non-isomorphic abelian groups of order 81.

Problem 10. Let K = Q(α1, . . . , αn) where α2
i ∈ Q for 1 ≤ i ≤ n. Prove that 3

√
2 /∈ K.

Proof. If possible, let us assume that 3
√
2 ∈ K. Then we must have 3 = [Q( 3

√
2) : Q]|[K : Q]. But we

would show that it is not possible that 3|[K : Q]. For this we use induction on n. For n = 1, we have
[K : Q] = 2 and our assertion is true. So we assume that the statement is for any n ≤ N . For n = N + 1
we have [K : Q] = [K : Q(α1, . . . , αN )][Q(α1, . . . , αN ) : Q]. Clearly K = Q(α1, . . . , αN )(αN+1) and we
have α2

N+1 ∈ Q. Hence 1 ≤ [K : Q(α1, . . . , αN )] ≤ 2 and not divisible by 3. By our induction hypothesis
[Q(α1, . . . , αN ) : Q] is also not divisible by 3. Hence by induction we have proved that [K : Q] is not
divisible by 3. So as argued above 3

√
2 /∈ K.
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